收录:
摘要:
不同公共交通类型乘客的出行特征存在显著差异,实现公共交通通勤乘客准确辨识,有助于获取精细化的公共交通出行特征,更好地满足不同类型乘客的出行需求.基于北京市公共交通刷卡和线站数据,对公共交通多源数据进行关联匹配并提取出行链.利用北京市连续1个月的公共交通刷卡出行数据,采用多层规划理论构建了个体出行知识图谱,提取了出行天数、出行空间均衡度等7类特征指标.通过RP调查获得乘客出行行为类别.以特征指标为输入,乘客分类为输出,构建了面向公共交通乘客分类的BP神经元网络模型.验证表明,模型平均分类精度为94.5%,Kappa系数为0.879.本文研究有助于准确识别不同类别的公共交通乘客,为优化公共交通运营...
关键词:
通讯作者信息:
电子邮件地址: