• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

申昌 (申昌.) | 冀俊忠 (冀俊忠.) (学者:冀俊忠)

收录:

CQVIP PKU CSCD

摘要:

针对现有深度学习方法在文本情感分类任务中特征提取能力方面的不足,提出基于扩展特征和动态池化的双通道卷积神经网络的文本情感分类算法.首先,结合情感词、词性、程度副词、否定词和标点符号等多种影响文本情感倾向的词语特征,形成一个扩展文本特征.然后,把词向量特征与扩展文本特征分别作为卷积神经网络的两个输入通道,采用动态k-max池化策略,提升模型提取特征的能力.在多个标准英文数据集上的文本情感分类实验表明,文中算法的分类性能不仅高于单通道卷积神经网络算法,而且相比一些代表性算法也具有一定的优势.

关键词:

扩展特征 卷积神经网络 动态k-max池化 文本情感分类 双通道

作者机构:

  • [ 1 ] 北京工业大学信息学部多媒体与智能软件技术北京市重点实验室

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

模式识别与人工智能

年份: 2018

期: 02

卷: 31

页码: 158-166

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 6

在线人数/总访问数:964/3857897
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司