• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhuo, Li (Zhuo, Li.) | Zhang, Pei (Zhang, Pei.) | Qu, Panling (Qu, Panling.) | Peng, Yuanfan (Peng, Yuanfan.) | Zhang, Jing (Zhang, Jing.) | Li, Xiaoguang (Li, Xiaoguang.)

收录:

EI Scopus SCIE

摘要:

In this paper a Kernel Partial Least Squares Regression (K-PLSR)-based color correction method for Traditional Chinese Medicine (TCM) tongue images under different illumination conditions has been proposed. The captured values under different illumination conditions and their reference values of 24 patches in the Munsell colorchecker are respectively considered as the input and the output. The mapping model between the input and the output is established by using the K-PLSR method in the device-independent CIE LAB color space. The mapping model is then applied to correct the captured tongue images. Experimental results show that, using the proposed method, the average color difference of each color patch is only 0.821 after correction. For the subjective results, tongue images under different illumination conditions can obtain consistent correction results, which is beneficial for subsequent standardized tongue image storage and automatic analysis in tongue diagnosis of TCM. Compared with the most commonly used polynomial-based correction method and support vector regression based correction method, whether for the subjective or objective evaluation, the proposed method can obtain a superior color correction performance. (C) 2015 Elsevier B.V. All rights reserved.

关键词:

Color correction Kernel Partial Least Squares Tongue image

作者机构:

  • [ 1 ] [Zhuo, Li]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China
  • [ 2 ] [Zhang, Pei]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China
  • [ 3 ] [Qu, Panling]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China
  • [ 4 ] [Peng, Yuanfan]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China
  • [ 5 ] [Zhang, Jing]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China
  • [ 6 ] [Li, Xiaoguang]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China
  • [ 7 ] [Zhuo, Li]Collaborat Innovat Ctr Elect Vehicles, Beijing, Peoples R China

通讯作者信息:

  • [Zhuo, Li]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

NEUROCOMPUTING

ISSN: 0925-2312

年份: 2016

卷: 174

页码: 815-821

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:167

中科院分区:3

被引次数:

WoS核心集被引频次: 18

SCOPUS被引频次: 24

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:850/3906906
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司