收录:
摘要:
近年来,随着大数据时代的到来,大数据处理平台发展迅速,产生了诸如Hadoop,Spark,Storm等优秀的大数据处理平台,其中Spark最为突出。随着Spark在国内外的广泛应用,其许多性能问题尚待解决。由于Spark底层的执行机制极为复杂,用户很难找到其性能瓶颈,更不要说进一步的优化。针对以上问题,从开发原则优化、内存优化、配置参数优化、调度优化、Shuffle过程优化5个方面对目前国内外的Spark优化技术进行总结和分析。最后,总结了目前Spark优化技术新的核心问题,并提出了未来的主要研究方向。
关键词:
通讯作者信息:
电子邮件地址: