• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yao, Haipeng (Yao, Haipeng.) | Qiu, Chao (Qiu, Chao.) | Fang, Chao (Fang, Chao.) | Chen, Xu (Chen, Xu.) (学者:徐晨) | Yu, F. Richard (Yu, F. Richard.)

收录:

EI Scopus SCIE

摘要:

Many communities have researched the application of novel network architectures, such as content-centric networking (CCN) and software-defined networking (SDN), to build the future Internet. Another emerging technology which is big data analysis has also won lots of attentions from academia to industry. Many splendid researches have been done on CCN, SDN, and big data, which all have addressed separately in the traditional literature. In this paper, we propose a novel network paradigm to jointly consider CCN, SDN, and big data, and provide the architecture internal data flow, big data processing, and use cases which indicate the benefits and applicability. Simulation results are exhibited to show the potential benefits relating to the proposed network paradigm. We refer to this novel paradigm as data-driven networking.

关键词:

Big data analysis cache management CCN data-driven networking SDN

作者机构:

  • [ 1 ] [Yao, Haipeng]Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing, Peoples R China
  • [ 2 ] [Chen, Xu]Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing, Peoples R China
  • [ 3 ] [Qiu, Chao]Beijing Univ Posts & Telecommun, Key Lab Univ Wireless Commun, Minist Educ, Beijing, Peoples R China
  • [ 4 ] [Fang, Chao]Beijing Univ Technol, Coll Informat & Commun Engn, Beijing Adv Innovat Ctr Future Internet Technol, Beijing, Peoples R China
  • [ 5 ] [Yu, F. Richard]Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON, Canada

通讯作者信息:

  • [Qiu, Chao]Beijing Univ Posts & Telecommun, Key Lab Univ Wireless Commun, Minist Educ, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE ACCESS

ISSN: 2169-3536

年份: 2016

卷: 4

页码: 9066-9072

3 . 9 0 0

JCR@2022

中科院分区:2

被引次数:

WoS核心集被引频次: 15

SCOPUS被引频次: 17

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:109/3275263
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司