收录:
摘要:
Two-dimensional (2D) materials have attracted broad interest because of their low-dimensional effect, and black phosphorus has become a member of them due to the successful preparation. Phosphorus has several allotropes, white phosphorus, red phosphorus and black phosphorus. Black phosphorus is most thermodynamic stable in them. Black phosphorus was obtained by a phase transition from white or red phosphorus at high pressure and high temperature. It is a natural p-type semiconductor in which each layer is vertically stacked by the van der Waals force. The thickness of black phosphorus can be scaled down to the atomic layer scale known as phosphorene by mechanical exfoliation or liquid exfoliation. In nowadays, pulsed laser deposition (PLD) has also been used in synthesis of phosphorene film. Compared with black phosphorus, phosphorene's physical properties have significant changes. The band gap in bulk black phosphorus is 0.3 eV and can be expanded to 1.0 to 1.5 eV depending on the layer numbers. The range of phosphorene band gap corresponds to an absorption spectrum between visible light to infrared. Moreover, the band gap of phosphorene is also highly sensitive to the strain either in-plane or out-of-plane. The phosphorene based field effect transistor (FET) exhibits a high mobility and appreciably high on/off ratios, and the mobility is thickness dependent. Unlike other two-dimensional (2D) materials, phosphorene has in-plane anisotropy which is suitable for the detecting of polarized light. Hence, the unique properties in black phosphorus, along with its high carrier mobility, make it as a promising material in electronic applications. Nevertheless, the poor chemical and structural stability of black phosphorus and phosphorene raises important concerns. In the past century, the synthesis, physical properties, and device applications have been extensively investigated in various studies. In this review article, a lot of references of black phosphorus are cited to introduce systematically the research progresses of structure and preparation, the study of material properties and device performance, the chemistry of the degradation process and the anti-degradation treatments. At last, the development trend of phosphorene is mentioned.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
ACTA CHIMICA SINICA
ISSN: 0567-7351
年份: 2016
期: 6
卷: 74
页码: 488-497
2 . 5 0 0
JCR@2022
ESI学科: CHEMISTRY;
ESI高被引阀值:221
中科院分区:4