• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Peng, Yijiang (Peng, Yijiang.) (学者:彭一江) | Chu, Hao (Chu, Hao.) | Pu, Jiwei (Pu, Jiwei.)

收录:

EI Scopus SCIE

摘要:

By using the Base Force Element Method (BFEM) on potential energy principle, a new numerical concrete model, random convex aggregate model, is presented in this paper to simulate the experiment under uniaxial compression for recycled aggregate concrete (RAC) which can also be referred to as recycled concrete. This model is considered as a heterogeneous composite which is composed of five mediums, including natural coarse aggregate, old mortar, new mortar, new interfacial transition zone (ITZ), and old ITZ. In order to simulate the damage processes of RAC, a curve damage model was adopted as the damage constitutive model and the strength theory of maximum tensile strain was used as the failure criterion in the BFEM on mesomechanics. The numerical results obtained in this paper which contained the uniaxial compressive strengths, size effects on strength, and damage processes of RAC are in agreement with experimental observations. The research works show that the random convex aggregate model and the BFEM with the curve damage model can be used for simulating the relationship between microstructure and mechanical properties of RAC.

关键词:

作者机构:

  • [ 1 ] [Peng, Yijiang]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 2 ] [Chu, Hao]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 3 ] [Pu, Jiwei]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China

通讯作者信息:

  • 彭一江

    [Peng, Yijiang]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ADVANCES IN MATERIALS SCIENCE AND ENGINEERING

ISSN: 1687-8434

年份: 2016

卷: 2016

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:198

中科院分区:4

被引次数:

WoS核心集被引频次: 15

SCOPUS被引频次: 22

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:393/3653509
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司