收录:
摘要:
针对间歇过程固有的多阶段特性和动态性,提出基于种群多样性的自适应惯性权重粒子群算法(PDPSO)优化的多阶段自回归主元分析(AR-PCA)间歇过程监测方法。该方法引入了PDPSO算法指导AP聚类偏向参数的选取,避免了传统方法依据聚类评价指标选取参考度时的盲目性。对PDPSO优化AP聚类的多阶段发酵过程的数据样本建立AR-PCA模型能够消除各阶段的动态性及变量之间的自相关和互相关影响。最后,对自回归(AR)模型的残差矩阵建立主成分分析(PCA)模型用于发酵过程监测。将该方法应用到青霉素发酵过程,并与传统方法进行对比,结果表明,该方法能够有效进行间歇过程阶段划分并降低故障的漏报和误报。
关键词:
通讯作者信息:
电子邮件地址: