收录:
摘要:
针对湿式球磨机工况改变时,实时数据与建模数据分布不一致,不满足数据同分布的假设,传统软测量模型难以适应数据分布变化,造成模型性能恶化的问题,有针对性地引入迁移学习策略,并通过多源域集成机制提高模型的鲁棒性,实现多工况下湿式球磨机负荷参数测量.首先,对多工况数据进行预处理并提取频谱特征,经过联合分布适配对多工况数据进行边缘、条件分布适配;然后,使用最大均值差异对适配后的数据进行分布度量并为源域构建的回归器加权;最后,对目标域数据进行负荷预测.通过对比实验与交叉实验表明了模型的实用性和有效性.
关键词:
通讯作者信息:
电子邮件地址: