• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Yang (Wang, Yang.) | Chen, Yanyan (Chen, Yanyan.) (学者:陈艳艳) | Lai, Jianhui (Lai, Jianhui.)

收录:

EI Scopus SCIE

摘要:

This paper presents a novel approach to one-step-forward prediction of traffic flow based on fuzzy reasoning. The successful construction of a competent fuzzy inference system of Sugeno type largely relies on proper choice of input dimension and accurate estimation of structure parameters and rules. The first issue is addressed with a proposed method, based on delta-test, which can simultaneously determine input dimension and reduce noise level. In response to the second issue, two clustering techniques, based on nearest-neighbor clustering and Gaussian mixture models, are successively employed to determine the antecedent parameters and rules, and the estimation for the consequent parameters is achieved by the least square estimation technique. A number of experiments have been performed on the one-week data of traffic flow to evaluate the proposed approach in terms of denosing, prediction performances, overfitting, and so forth. The experimental results have demonstrated that the proposed prediction approach is effective in removing noise and constructing a competent and compact fuzzy inference system without significant overfitting.

关键词:

作者机构:

  • [ 1 ] [Wang, Yang]Beijing Univ Technol, Beijing Key Lab Traff Engn, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 2 ] [Chen, Yanyan]Beijing Univ Technol, Beijing Key Lab Traff Engn, 100 Pingleyuan, Beijing 100124, Peoples R China
  • [ 3 ] [Lai, Jianhui]Beijing Univ Technol, Beijing Key Lab Traff Engn, 100 Pingleyuan, Beijing 100124, Peoples R China

通讯作者信息:

  • 陈艳艳

    [Chen, Yanyan]Beijing Univ Technol, Beijing Key Lab Traff Engn, 100 Pingleyuan, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

MATHEMATICAL PROBLEMS IN ENGINEERING

ISSN: 1024-123X

年份: 2016

卷: 2016

ESI学科: ENGINEERING;

ESI高被引阀值:102

中科院分区:4

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:1072/3643470
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司