• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhu, Xiaorui (Zhu, Xiaorui.) | Xie, Li (Xie, Li.)

收录:

SSCI Scopus SCIE

摘要:

This paper proposes an adaptive quasi-maximum likelihood estimation (QMLE) when forecasting the volatility of financial data with the generalized autoregressive conditional heteroscedasticity (GARCH) model. When the distribution of volatility data is unspecified or heavy-tailed, we worked out adaptive QMLE based on data by using the scale parameter (f) to identify the discrepancy between wrongly specified innovation density and the true innovation density. With only a few assumptions, this adaptive approach is consistent and asymptotically normal. Moreover, it gains better efficiency under the condition that innovation error is heavy-tailed. Finally, simulation studies and an application show its advantage.

关键词:

Adaptive estimator C13 Heavy-tailed error Quasi likelihood GARCH model C22

作者机构:

  • [ 1 ] [Zhu, Xiaorui]Beijing Univ Technol, Coll Appl Sci, Pingleyuan 100, Beijing 100124, Peoples R China
  • [ 2 ] [Xie, Li]Beijing Univ Technol, Coll Appl Sci, Pingleyuan 100, Beijing 100124, Peoples R China

通讯作者信息:

  • [Zhu, Xiaorui]Beijing Univ Technol, Coll Appl Sci, Pingleyuan 100, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

COMMUNICATIONS IN STATISTICS-THEORY AND METHODS

ISSN: 0361-0926

年份: 2016

期: 20

卷: 45

页码: 6102-6111

0 . 8 0 0

JCR@2022

ESI学科: MATHEMATICS;

ESI高被引阀值:71

中科院分区:4

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:517/4957710
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司