• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wu, Liu-Cang (Wu, Liu-Cang.) | Zhang, Zhong-Zhan (Zhang, Zhong-Zhan.) (学者:张忠占) | Tian, Guo-Liang (Tian, Guo-Liang.) | Xu, Deng-Ke (Xu, Deng-Ke.)

收录:

CPCI-S Scopus SCIE

摘要:

Although the t-type estimator is a kind of M-estimator with scale optimization, it has some advantages over the M-estimator. In this article, we first propose a t-type joint generalized linear model as a robust extension to the classical joint generalized linear models for modeling data containing extreme or outlying observations. Next, we develop a t-type pseudo-likelihood (TPL) approach, which can be viewed as a robust version to the existing pseudo-likelihood (PL) approach. To determine which variables significantly affect the variance of the response variable, we then propose a unified penalized maximum TPL method to simultaneously select significant variables for the mean and dispersion models in t-type joint generalized linear models. Thus, the proposed variable selection method can simultaneously perform parameter estimation and variable selection in the mean and dispersion models. With appropriate selection of the tuning parameters, we establish the consistency and the oracle property of the regularized estimators. Simulation studies are conducted to illustrate the proposed methods.

关键词:

Joint generalized linear models t-type pseudo-likelihood Variable selection Penalized maximum t-type pseudo-likelihood estimator

作者机构:

  • [ 1 ] [Wu, Liu-Cang]Kunming Univ Sci & Technol, Fac Sci, Kunming 650093, Peoples R China
  • [ 2 ] [Zhang, Zhong-Zhan]Beijing Univ Technol, Coll Appl Sci, Beijing, Peoples R China
  • [ 3 ] [Xu, Deng-Ke]Beijing Univ Technol, Coll Appl Sci, Beijing, Peoples R China
  • [ 4 ] [Tian, Guo-Liang]Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China

通讯作者信息:

  • [Wu, Liu-Cang]Kunming Univ Sci & Technol, Fac Sci, Kunming 650093, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION

ISSN: 0361-0918

年份: 2016

期: 7

卷: 45

页码: 2320-2337

0 . 9 0 0

JCR@2022

ESI学科: MATHEMATICS;

ESI高被引阀值:71

中科院分区:4

被引次数:

WoS核心集被引频次: 2

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:160/4297949
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司