• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhao, Liya (Zhao, Liya.) | Jia, Kebin (Jia, Kebin.) (学者:贾克斌)

收录:

Scopus SCIE PubMed

摘要:

Early brain tumor detection and diagnosis are critical to clinics. Thus segmentation of focused tumor area needs to be accurate, efficient, and robust. In this paper, we propose an automatic brain tumor segmentation method based on Convolutional Neural Networks (CNNs). Traditional CNNs focus only on local features and ignore global region features, which are both important for pixel classification and recognition. Besides, brain tumor can appear in any place of the brain and be any size and shape in patients. We design a three-stream framework named as multiscale CNNs which could automatically detect the optimum top-three scales of the image sizes and combine information from different scales of the regions around that pixel. Datasets provided by Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized by MICCAI 2013 are utilized for both training and testing. The designed multiscale CNNs framework also combines multimodal features from T1, T1-enhanced, T2, and FLAIR MRI images. By comparison with traditional CNNs and the best two methods in BRATS 2012 and 2013, our framework shows advances in brain tumor segmentation accuracy and robustness.

关键词:

作者机构:

  • [ 1 ] [Zhao, Liya]Beijing Univ Technol, Multimedia Informat Proc Grp, Coll Elect Informat & Control Engn, Beijing, Peoples R China
  • [ 2 ] [Jia, Kebin]Beijing Univ Technol, Multimedia Informat Proc Grp, Coll Elect Informat & Control Engn, Beijing, Peoples R China

通讯作者信息:

  • 贾克斌

    [Jia, Kebin]Beijing Univ Technol, Multimedia Informat Proc Grp, Coll Elect Informat & Control Engn, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE

ISSN: 1748-670X

年份: 2016

卷: 2016

ESI学科: MATHEMATICS;

ESI高被引阀值:71

中科院分区:4

被引次数:

WoS核心集被引频次: 90

SCOPUS被引频次: 126

ESI高被引论文在榜: 5 展开所有

  • 2024-1
  • 2023-11
  • 2023-9
  • 2023-7
  • 2023-5

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:107/4304207
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司