收录:
摘要:
针对单一全互连前馈神经网络难以应对复杂问题及模块化神经网络应用时其结构难以确定的问题,该文基于脑式信息处理是采用无监督学习-半监督学习-监督学习的学习机制以及大脑是由多个功能模块组成,每个功能模块中又包含多个子模块,大脑对信息的学习是有目的的选择不同功能模块中多个子模块协同学习的事实,提出一种多层自适应模块化神经网络结构设计方法.其实质是首先对所有的训练数据采用概率密度峰值快速聚类算法确定训练数据的聚类中心,以此确定模块化神经网络中功能模块的个数,其次采用条件模糊聚类实现对每个功能模块中子模块的划分并确定每个子模块的训练样本集;对功能模块中的每一个子模块采用训练误差峰值构造RBF网络的增长算法...
关键词:
通讯作者信息:
电子邮件地址: