• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

曾少锋 (曾少锋.) | 李玉鑑 (李玉鑑.) | 刘兆英 (刘兆英.)

收录:

CQVIP PKU CSCD

摘要:

传统的线性学习图匹配模型具有易于训练和能够求解最优匹配的优点,但是没有考虑图的结构信息,从而限制了其匹配精度.为克服这一缺点,提出一种新的线性学习图匹配模型——基于边特征的学习完全图匹配模型(ELC-GM),其中,边特征由边上采样点的特征描述,而采样点的特征是通过一种包含旋转不变因子的形状上下文特征描述的.ELC-GM先对模型进行有监督的训练,再用Kuhn-Munkres算法求解边匹配,进而用Hungarian解码算法将边匹配转换为点匹配.实验结果表明,ELC-GM的训练效果稳定,匹配精度即使在形变和噪声条件下也能得到一定提升.

关键词:

图匹配 旋转 边特征 Hungarian解码 监督

作者机构:

  • [ 1 ] 北京工业大学计算机学院

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

计算机辅助设计与图形学学报

年份: 2017

期: 02

卷: 29

页码: 236-243

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:997/3886257
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司