收录:
摘要:
在多示例学习(MIL)中,包是含有多个示例的集合,训练样本只给出包的标记,而没有给出单个示例的标记。提出一种基于示例标记强度的MIL方法(ILI-MIL),其允许示例标记强度为任何实数。考虑到基于梯度训练神经网络方法的计算复杂性和ILI-MIL目标函数的复杂性,利用基于化学反应优化的高阶神经网络来实现ILI-MIL,学习方法具有较强的非线性表达能力和较高的计算效率。实验结果表明,该算法比已有算法具有更加有效的分类能力,且适应范围更广。
关键词:
通讯作者信息:
电子邮件地址: