• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xia, G. D. (Xia, G. D..) (学者:夏国栋) | Ma, D. D. (Ma, D. D..) | Wang, W. (Wang, W..) (学者:王伟) | Zhai, Y. L. (Zhai, Y. L..)

收录:

EI Scopus SCIE

摘要:

3D-IC is getting increasingly attractive, as it improves speed and frequency and reduces power consumption, noise and latency. However, three-dimension (3D) integration technology brings a new serious challenge to chip thermal management with the power density increased exponentially. Interlayer micro-channel liquid cooling is a promising and scalable solution for high heat flux removal in 3D-IC. The effects of geometric parameters on fluid flow and heat transfer characteristics in interlayer micro-channel cooling for 3D-IC with triangular reentrant cavities (TRC) and fan-shaped reentrant cavities (FRC) are numerically investigated. 3D-IC with TRC and FRC for pitch = 0.1/0.2 mm and height = 0.2 mm are analyzed and compared with rectangular micro-channel (RMC) for 1 cm(2) heat areas. Results show that the heat rate and pressure drop distributions of each layer for length = 5 mm and pitch = 0.2 mm are more uniform. The micro-channels of pitch = 0.1 mm have better heat transfer performance, simultaneously cause the pressure drop and pumping power increasing sharply, which are undesirable and uneconomical for 3D-IC. For smaller Re, the micro-channels with surface enhancement structures TRC and FRC deteriorate heat transfer. While at the larger Re, heat transfer is enhanced, which can be attributed to heat transfer area increased, boundary layer thinned, boundary layer interrupted and chaotic advection by generating vortices. The 3D-IC with FRC-L5-P0.2 has better heat transfer performance and lowest pumping power, which is more suitable and economical for 3D-IC inter-layer cooling. For channel length of 10 mm, the fluid temperature is higher in the last 5 mm, which deteriorates heat transfer effect, simultaneously the longer length leads to pumping power and flow resistance enlarged. Besides, 3D-IC with FRC decreases the laminar stagnation zones and improves the heat transfer performance, due to owning bigger included angle of the expansion and constriction walls in channel. (C) 2015 Elsevier Ltd. All rights reserved.

关键词:

3D-IC Heat transfer Micro-channel Reentrant cavities Interlayer cooling Allocations

作者机构:

  • [ 1 ] [Xia, G. D.]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Ma, D. D.]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, W.]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Zhai, Y. L.]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • 夏国栋

    [Xia, G. D.]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER

ISSN: 0017-9310

年份: 2015

卷: 91

页码: 1167-1175

5 . 2 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:174

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 12

SCOPUS被引频次: 15

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:795/3895634
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司