收录:
摘要:
In this paper, we prepare several GexSb20Se80-x glasses (x = 5 mol%, 10 mol%, 15 mol%, 17.5 mol%, 20 mol%, and 25 mol%), and measure their Raman and X-ray photoelectron spectra (Ge 3d, Sb 4d, and Se 3d) in order to understand the evolution of the glass structure with chemical composition. We further decompose the spectra into different structural units according to the assignments of these structural units in the previous literature. It is found that the structural units of Se-Se-Se trimers exist in the Se-rich glasses, but the number of the structural units of trimers decreases rapidly with the increase of Ge concentration and finally becomes zero in Ge15Sb20Se65 glass. With the increase of Ge concentration, the quantity of GeSe4/2 tetrahedral structures increases, but the number of SbSe3/2 pyramidal structures remains almost unchanged in the Se-rich glasses. On the other hand, the numbers of Ge-Ge and Sb-Sb homopolar bonds increase with the increase of Ge concentration, but those of the GeSe4/2 tetrahedral and SbSe3/2 pyramidal structures decrease in the Se-poor glasses. Moreover, the Se-Se homopolar bonds exist in all the glasses, and they cannot be completely suppressed. When the composition is close to stochiometric value, the glass is dominated by heteropolar Ge-Se and Sb-Se bonds, but has negligible quantities of Ge-Ge, Sb-Sb and Se-Se homopolar bonds. The transition threshold, rather than the transition predicted by the topological constraint model, occurs at the chemically stoichiometric glasses. This suggests that chemical order, rather than topological order, is a main factor in determining structures and physical properties of Ge-Sb-Se glasses.
关键词:
通讯作者信息:
电子邮件地址: