收录:
摘要:
针对污水处理过程生化需氧量(BOD)浓度难以实时监测的问题,建立了一种基于支持向量回归机(SVR)修正方法的案例推理(CBR)预测模型。该模型主要包括案例检索、案例重用、SVR修正、案例存储等4个部分,其中,SVR修正模型是利用历史数据构造修正案例库,并采用SVR训练而获得的,可以对传统CBR求解模型得到的BOD浓度建议值进行修正。实验表明本文模型的拟合误差优于支持向量机(SVM)、BP神经网络、RBF神经网络以及传统CBR方法,说明SVR修正方法的引入可以改善CBR的回归性能,提高CBR的学习能力。
关键词:
通讯作者信息:
电子邮件地址: