• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Cui Lingli (Cui Lingli.) (学者:崔玲丽) | Ma Chunqing (Ma Chunqing.) | Zhang Feibin (Zhang Feibin.) | Wang Huaqing (Wang Huaqing.)

收录:

EI Scopus SCIE CSCD

摘要:

The condition monitoring and fault diagnosis of rolling element bearings are particularly crucial in rotating mechanical applications in industry. A bearing fault signal contains information not only about fault condition and fault type but also the severity of the fault. This means fault severity quantitative analysis is one of most active and valid ways to realize proper maintenance decision. Aiming at the deficiency of the research in bearing single point pitting fault quantitative diagnosis, a new back-propagation neural network method based on wavelet packet decomposition coefficient entropy is proposed. The three levels of wavelet packet coefficient entropy(WPCE) is introduced as a characteristic input vector to the BPNN. Compared with the wavelet packet decomposition energy ratio input vector, WPCE shows more sensitive in distinguishing from the different fault severity degree of the measured signal. The engineering application results show that the quantitative trend fault diagnosis is realized in the different fault degree of the single point bearing pitting fault. The breakthrough attempt from quantitative to qualitative on the pattern recognition of rolling element bearings fault diagnosis is realized.

关键词:

back-propagation neural network quantitative analysis rolling bearing fault wavelet packet coefficient entropy wavelet packet energy ratio

作者机构:

  • [ 1 ] [Cui Lingli]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Ma Chunqing]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang Feibin]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang Feibin]Jiangxi Agr Univ, Coll Engn, Nanchang 330045, Peoples R China
  • [ 5 ] [Wang Huaqing]Beijing Univ Chem Technol, Sch Mech & Elect Engn, Beijing 100029, Peoples R China

通讯作者信息:

  • [Zhang Feibin]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

CHINESE JOURNAL OF MECHANICAL ENGINEERING

ISSN: 1000-9345

年份: 2015

期: 6

卷: 28

页码: 1254-1260

4 . 2 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:114

JCR分区:4

中科院分区:4

被引次数:

WoS核心集被引频次: 9

SCOPUS被引频次: 14

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 6

在线人数/总访问数:50/3612147
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司