• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Xueliang (Liu, Xueliang.) | Wang, Meng (Wang, Meng.) | Yin, Bao-Cai (Yin, Bao-Cai.) (学者:尹宝才) | Huet, Benoit (Huet, Benoit.) | Li, Xuelong (Li, Xuelong.)

收录:

Scopus SCIE

摘要:

Nowadays, with the continual development of digital capture technologies and social media services, a vast number of media documents are captured and shared online to help attendees record their experience during events. In this paper, we present a method combining semantic inference and multimodal analysis for automatically finding media content to illustrate events using an adaptive probabilistic hypergraph model. In this model, media items are taken as vertices in the weighted hypergraph and the task of enriching media to illustrate events is formulated as a ranking problem. In our method, each hyperedge is constructed using the K-nearest neighbors of a given media document. We also employ a probabilistic representation, which assigns each vertex to a hyperedge in a probabilistic way, to further exploit the correlation among media data. Furthermore, we optimize the hypergraph weights in a regularization framework, which is solved as a second-order cone problem. The approach is initiated by seed media and then used to rank the media documents using a transductive inference process. The results obtained from validating the approach on an event dataset collected from EventMedia demonstrate the effectiveness of the proposed approach.

关键词:

hypergraph transductive learning Event enrichment

作者机构:

  • [ 1 ] [Liu, Xueliang]Hefei Univ Technol, Sch Comp Sci & Informat Engn, Hefei 230009, Peoples R China
  • [ 2 ] [Wang, Meng]Hefei Univ Technol, Sch Comp Sci & Informat Engn, Hefei 230009, Peoples R China
  • [ 3 ] [Yin, Bao-Cai]Beijing Univ Technol, Sch Transportat, Beijing 100124, Peoples R China
  • [ 4 ] [Huet, Benoit]EURECOM, Dept Multimedia, F-06904 Sophia Antipolis, France
  • [ 5 ] [Li, Xuelong]Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Ctr Opt Imagery Anal & Learning, Xian 710119, Peoples R China

通讯作者信息:

  • [Liu, Xueliang]Hefei Univ Technol, Sch Comp Sci & Informat Engn, Hefei 230009, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON CYBERNETICS

ISSN: 2168-2267

年份: 2015

期: 11

卷: 45

页码: 2461-2471

1 1 . 8 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:168

JCR分区:1

中科院分区:1

被引次数:

WoS核心集被引频次: 11

SCOPUS被引频次: 17

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:85/4301677
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司