收录:
摘要:
为了提高对视频序列中人体行为的识别能力,建立了基于局部特征的动作识别框架。通过时空特征提取及编码和SVM分类器参数优化两部分对该框架所涉及算法进行了研究。首先,采用Harris3D检测器获取时空兴趣点(STIP),以方向梯度直方图(HOG)和光流方向直方图(HOF)对STIP进行描述,并引入Fisher向量实现对特征描述子的编码;由于固定参数下SVM动作分类模型存在泛化能力不足的问题,将粒子群算法应用于各动作分类器参数寻优过程中,针对种群多样性逐代变化的特点,构建粒子聚集度模型,并利用其动态调节各代粒子的变异概率;最后,利用KTH和HMDB51数据集对所提方法进行验证。结果表明,所提自适应变异...
关键词:
通讯作者信息:
电子邮件地址: