• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Zhang, Guojun (Zhang, Guojun.) | Li, Jie (Li, Jie.) | Wang, Naixin (Wang, Naixin.) (Scholars:王乃鑫) | Fan, Hongwei (Fan, Hongwei.) | Zhang, Rong (Zhang, Rong.) | Ji, Shulan (Ji, Shulan.) (Scholars:纪树兰)

Indexed by:

EI Scopus SCIE

Abstract:

Metal organic frameworks (MOFs) have received much attention in recent years because of their good compatibility with polymer as well as their porous structure that facilitates transport tillers in a polymer matrix. In this study, MIL-53 particles were synthesized and incorporated into polydimethylsiloxane (PDMS) matrix to produce novel MIL-53/PDMS hybrid membrane. The morphologies and structures of MIL-53 particles and their hybrid membranes were characterized by SEM, XRD, FTIR, AFM and contact angle. It can be seen from the results that MIL-53 particles formed hydrogen bonding with PDMS and dispersed well in PDMS matrix. In addition, the hydrophobicity of hybrid membrane were improved due to the doping of MIL-53 particles. The MIL-53/PDMS hybrid membranes were used for ethanol permselective pervaporation. The effects of particle loading, feed concentration and temperature on the separation performance of MIL-53/PDMS membranes were investigated. The results indicated that compared with pristine PDMS membrane, the permeate flux of MIL-53/PDMS hybrid membranes with 40% loading significantly increased from 1667 to 5467 g/(m(2) h), while the separation factor remained 11.1. The enhancement of the permeate flux could be attributed to the water-repellency surface and ethanol-affinity channels of MIL-53 particles. The unique nature of MIL-53 suggests a promising future to fabricate hybrid membranes for ethanol recovery via pervaporation process. (C) 2015 Elsevier B.V. All rights reserved.

Keyword:

Hybrid membrane Ethanol permselective Pervaporation MIL-53 particles

Author Community:

  • [ 1 ] [Zhang, Guojun]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Jie]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Naixin]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 4 ] [Fan, Hongwei]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Rong]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 6 ] [Zhang, Guojun]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 7 ] [Ji, Shulan]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 王乃鑫

    [Wang, Naixin]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

JOURNAL OF MEMBRANE SCIENCE

ISSN: 0376-7388

Year: 2015

Volume: 492

Page: 322-330

9 . 5 0 0

JCR@2022

ESI Discipline: CHEMISTRY;

ESI HC Threshold:253

JCR Journal Grade:1

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count: 105

SCOPUS Cited Count: 117

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Online/Total:720/5585361
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.