• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Fang, Liying (Fang, Liying.) | Zhao, Han (Zhao, Han.) | Wang, Pu (Wang, Pu.) | Yu, Mingwei (Yu, Mingwei.) | Yan, Jianzhuo (Yan, Jianzhuo.) | Cheng, Wenshuai (Cheng, Wenshuai.) | Chen, Peiyu (Chen, Peiyu.)

收录:

EI Scopus SCIE

摘要:

In clinical medicine, multidimensional time series data can be used to find the rules of disease progress by data mining technology, such as classification and prediction. However, in multidimensional time series data mining problems, the excessive data dimension causes the inaccuracy of probability density distribution to increase the computational complexity. Besides, information redundancy and irrelevant features may lead to high computational complexity and over-fitting problems. The combination of these two factors can reduce the classification performance. To reduce computational complexity and to eliminate information redundancies and irrelevant features, we improved upon a multidimensional time series feature selection method to achieve dimension reduction. The improved method selects features through the combination of the Kozacbenko-Leonenko (K-L) information entropy estimation method for feature extraction based on mutual information and the feature selection algorithm based on class separability. We performed experiments on the Electroencephalogram (EEG) dataset for verification and the non-small cell lung cancer (NSCLC) clinical dataset for application. The results show that with the comparison of CLeVer, Corona and AGV, respectively, the improved method can effectively reduce the dimensions of multidimensional time series for clinical data. (C) 2015 The Authors. Published by Elsevier Ltd.

关键词:

Class separability Dimension reduction Feature selection Multidimensional time series Mutual information

作者机构:

  • [ 1 ] [Fang, Liying]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Zhao, Han]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Pu]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Yan, Jianzhuo]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Cheng, Wenshuai]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Chen, Peiyu]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 7 ] [Fang, Liying]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 8 ] [Zhao, Han]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 9 ] [Wang, Pu]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 10 ] [Yan, Jianzhuo]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 11 ] [Cheng, Wenshuai]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 12 ] [Chen, Peiyu]Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
  • [ 13 ] [Fang, Liying]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 14 ] [Zhao, Han]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 15 ] [Wang, Pu]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 16 ] [Yan, Jianzhuo]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 17 ] [Cheng, Wenshuai]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 18 ] [Chen, Peiyu]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 19 ] [Yu, Mingwei]CPUMS, Hosp Tradit Chinese Med, Beijing 100010, Peoples R China

通讯作者信息:

  • [Fang, Liying]Beijing Univ Technol, Coll Elect Informat & Control Engn, 100 Pingleyuan St, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

BIOMEDICAL SIGNAL PROCESSING AND CONTROL

ISSN: 1746-8094

年份: 2015

卷: 21

页码: 82-89

5 . 1 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:114

JCR分区:3

中科院分区:4

被引次数:

WoS核心集被引频次: 48

SCOPUS被引频次: 58

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:80/3612201
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司