• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

何明 (何明.) | 刘伟世 (刘伟世.) | 张江 (张江.)

收录:

CQVIP PKU CSCD

摘要:

现有的关联规则推荐技术在数据提取时主要侧重于关联规则的提取效率,缺乏对冷、热门数据推荐平衡性的考虑和有效处理。为了提高个性化推荐效率和推荐质量,平衡冷门与热门数据推荐权重,对关联规则的Apriori算法频繁项集挖掘问题进行了重新评估和分析,定义了新的测评指标推荐非空率以及k前项频繁项集关联规则的概念,设计了基于k前项频繁项集的剪枝方法,提出了优化Apriori算法且适合不同测评标准值的k前项频繁项集挖掘算法,降低频繁项集提取的时间复杂度。理论分析比较与实验表明,k前项剪枝方法提高了频繁项集的提取效率,拥有较高的推荐非空率、调和平均值和推荐准确率,有效地平衡了冷、热门数据的推荐权重。

关键词:

推荐非空率 关联规则 数据挖掘 推荐系统

作者机构:

  • [ 1 ] 北京工业大学信息学部计算机学院
  • [ 2 ] 国网英大国际控股集团有限公司信息化工作部

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

通信学报

年份: 2017

期: 10

卷: 38

页码: 18-25

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:4026/3877046
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司