收录:
摘要:
随着大数据时代的到来,应用数据量剧增,个性化推荐技术日趋重要。传统的推荐技术直接应用于大数据环境时会面临推荐精度低、推荐时延长以及网络开销大等问题,导致推荐性能急剧下降。针对上述问题,提出用户共现矩阵乘子推荐策略,将用户相似度矩阵与项目评分矩阵相乘得到用户对项目的预测评分矩阵,从而生成对每个用户的候选推荐项目集;在此基础上,根据分布式处理架构的特点对传统协同过滤算法进行并行化扩展,设计了基于用户的分布式协同过滤算法;最后通过重定义序列组合的MapReduce模式将多个子任务串联起来,自动地完成顺序化的执行。实验结果表明,该算法在分布式计算环境下具有良好的推荐精度和推荐效率。
关键词:
通讯作者信息:
电子邮件地址: