• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Bo (Liu, Bo.) (学者:刘博) | Li, Jianqiang (Li, Jianqiang.) (学者:李建强) | Chen, Cheng (Chen, Cheng.) | Tan, Wei (Tan, Wei.) | Chen, Qiang (Chen, Qiang.) | Zhou, MengChu (Zhou, MengChu.)

收录:

EI Scopus SCIE

摘要:

Analyzing time series data can reveal the temporal behavior of the underlying mechanism producing the data. Time series motifs, which are similar subsequences or frequently occurring patterns, have significant meanings for researchers especially in medical domain. With the fast growth of time series data, traditional methods for motif discovery are inefficient and not applicable to large-scale data. This work proposes an efficient Motif Discovery method for Large-scale time series (MDLats). By computing standard motifs, MDLats eliminates a majority of redundant computation in the related arts and reuses existing information to the maximum. All the motif types and subsequences are generated for subsequent analysis and classification. Our system is implemented on a Hadoop platform and deployed in a hospital for clinical electrocardiography classification. The experiments on real- world healthcare data show that MDLats outperform the state-of-the-art methods even in large time series.

关键词:

motif pattern discovery time series Data mining

作者机构:

  • [ 1 ] [Liu, Bo]Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
  • [ 2 ] [Liu, Bo]NEC Labs China, Beijing 100084, Peoples R China
  • [ 3 ] [Li, Jianqiang]Beijing Univ Technol, Sch Software Engn, Beijing 100022, Peoples R China
  • [ 4 ] [Chen, Cheng]Chinese Acad Sci, Beijing 100190, Peoples R China
  • [ 5 ] [Chen, Qiang]Chinese Acad Sci, Beijing 100190, Peoples R China
  • [ 6 ] [Tan, Wei]IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
  • [ 7 ] [Zhou, MengChu]New Jersey Inst Technol, Newark, NJ 07102 USA

通讯作者信息:

  • 刘博

    [Liu, Bo]Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

ISSN: 1551-3203

年份: 2015

期: 3

卷: 11

页码: 583-590

1 2 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:174

JCR分区:1

中科院分区:1

被引次数:

WoS核心集被引频次: 46

SCOPUS被引频次: 63

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:853/3916561
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司