• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

张静 (张静.) | 张新峰 (张新峰.) | 王亚真 (王亚真.) | 蔡轶珩 (蔡轶珩.) | 胡广芹 (胡广芹.)

收录:

CQVIP

摘要:

目的 中医舌诊中,一幅舌象对应舌色、苔色和苔厚等多个类别,而且舌象的多个类别间存在一定的相关性.传统的数据挖掘技术无法利用这些相关性同时进行建模,本文拟探索用多标记学习方法解决舌象这种多标记数据的分类问题.方法 首先对舌象进行苔质分离,分别提取舌质和舌苔的颜色特征,再对舌苔图像分块,提取每一块的纹理特征,随后通过多标记学习算法(multi-label learning by exploiting label dependency,LEAD)进行分类.最后将LEAD的分类结果和ML-kNN的结果进行对比,评价指标为汉明损失(Hamming loss)、平均精度(average precision)和((e)-评估)((e)-evaluation).结果 相对于SVM等传统的单标记学习算法,LEAD可以将多个类别同时赋予一幅舌图像,而且在三个指标上的分类效果均优于ML-kNN.结论 多标记LEAD算法用于舌象分类能够使得对舌象的描述更全面、准确,可以辅助中医进行舌诊.

关键词:

中医 多标记学习 舌苔 舌象 舌质

作者机构:

  • [ 1 ] [张静]北京工业大学
  • [ 2 ] [张新峰]北京工业大学
  • [ 3 ] [王亚真]北京工业大学
  • [ 4 ] [蔡轶珩]北京工业大学
  • [ 5 ] [胡广芹]北京工业大学

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

北京生物医学工程

ISSN: 1002-3208

年份: 2016

期: 2

卷: 35

页码: 111-116

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次: 4

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:403/3653468
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司