• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Hohn, Maryann E. (Hohn, Maryann E..) | Li, Bo (Li, Bo.) | Yang, Weihua (Yang, Weihua.)

收录:

Scopus SCIE PubMed

摘要:

We consider a system of coupled reaction diffusion equations that models the interaction between multiple types of chemical species, particularly the interaction between one messenger RNA and different types of non-coding microRNAs in biological cells. We construct various modeling systems with different levels of complexity for the reaction, nonlinear diffusion, and coupled reaction and diffusion of the RNA interactions, respectively, with the most complex one being the full coupled reaction-diffusion equations. The simplest system consists of ordinary differential equations (ODE) modeling the chemical reaction. We present a derivation of this system using the chemical master equation and the mean-field approximation, and prove the existence, uniqueness, and linear stability of equilibrium solution of the ODE system. Next, we consider a single, nonlinear diffusion equation for one species that results from the slow diffusion of the others. Using variational techniques, we prove the existence and uniqueness of solution to a boundary-value problem of this nonlinear diffusion equation. Finally, we consider the full system of reaction diffusion equations, both steady-state and time-dependent. We use the monotone method to construct iteratively upper and lower solutions and show that their respective limits are solutions to the reaction-diffusion system. For the time-dependent system of reaction-diffusion equations, we obtain the existence and uniqueness of global solutions. We also obtain some asymptotic properties of such solutions. (C) 2014 Elsevier Inc. All rights reserved.

关键词:

Monotone methods Maximum principle Reaction-diffusion systems Variational methods RNA Well-posedness

作者机构:

  • [ 1 ] [Hohn, Maryann E.]Univ Connecticut, Dept Math, Storrs, CT 06269 USA
  • [ 2 ] [Li, Bo]Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
  • [ 3 ] [Yang, Weihua]Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
  • [ 4 ] [Li, Bo]Univ Calif San Diego, Ctr Theoret Biol Phys, La Jolla, CA 92093 USA
  • [ 5 ] [Yang, Weihua]Univ Calif San Diego, Ctr Theoret Biol Phys, La Jolla, CA 92093 USA
  • [ 6 ] [Yang, Weihua]Beijing Univ Technol, Dept Math, Beijing 100124, Peoples R China
  • [ 7 ] [Yang, Weihua]Beijing Univ Technol, Inst Math & Phys, Beijing 100124, Peoples R China

通讯作者信息:

  • [Li, Bo]Univ Calif San Diego, Dept Math, 9500 Gilman Dr,Mail Code 0112, La Jolla, CA 92093 USA

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS

ISSN: 0022-247X

年份: 2015

期: 1

卷: 425

页码: 212-233

1 . 3 0 0

JCR@2022

ESI学科: MATHEMATICS;

ESI高被引阀值:82

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:430/4948150
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司