收录:
摘要:
Sparse deep neural networks (SDNNs) for speaker segmentation are proposed. First, the SDNNs are trained using the side information that is the class label of the input. Then, speaker-specific features are extracted from the super-vector feature of the speech signal by the SDNNs. Lastly, the label of each speech frame is obtained by K-means clustering, which is used to segment different speakers of a continuous speech stream. The performance evaluation using the multi-speaker speech stream corpus generated from the TIMIT database shows that the proposed speaker segmentation algorithm outperforms the Bayesian information criterion method and the deep auto-encoder networks method.
关键词:
通讯作者信息:
电子邮件地址: