收录:
摘要:
针对间歇过程固有的多阶段特性,也为了克服传统阶段划分方法严格按照物理时刻顺序将采样点硬性分割而不能使其寻找数据特征最为相近的聚类中心的严重缺陷,提出基于仿射传播聚类(AP)的子集多向主元分析(subset-MPCA)监测新方法:采用全新的乱序聚类思想,将时间片矩阵打乱用AP进行无约束乱序聚类,使样本突破时间顺序的约束自由找寻与其特征最为相近的聚类中心,获得聚类子集,建立精确的子集MPCA监控模型。在线监控时,引入信息度传递实现实时采样点的阶段归属判断,解决阶段不等长批次的最佳模型选择问题。对青霉素仿真数据的实验表明,该方法较传统方法可有效降低故障的漏报和误报,有着更加可靠的监控性能。
关键词:
通讯作者信息:
电子邮件地址: