收录:
摘要:
Chloroethylnitrosoureas (CENUs), which are bifunctional alkylating agents widely used in the clinical treatment of cancer, exert anticancer activity by inducing crosslink within a guanine-cytosine DNA base pair. However, the formation of dG-dC crosslinks can be prevented by O-6-alkylguanine-DNA alkyltransferase (AGT), ultimately leading to drug resistance. Therefore, the level of AGT expression is related to the formation of dG-dC crosslinks and the sensitivity of cells to CENUs. In this work, we determined the CENU-induced dG-dC crosslink in mouse L1210 leukemia cells and in human glioblastoma cells (SF-763, SF-767 and SF-126) containing different levels of AGT using high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. The results indicate that nimustine (ACNU) induced more dG-dC crosslinks in L1210 leukemia cells than those induced by carmustine (BCNU), lomustine (CCNU) and fotemustine (FTMS). This result was consistent with a previously reported cohort study, which demonstrated that ACNU had a better survival gain than BCNU, CCNU and FTMS for patients with high-grade glioma. Moreover, we compared the crosslinking levels and the cytotoxicity in SF-763, SF-767 and SF-126 cells with different AGT expression levels after exposure to ACNU. The levels of dG-dC crosslink in SF-126 cells (low AGT expression) were significantly higher than those in SF-767 (medium AGT expression) and SF-763 (high AGT expression) cells at each time point. Correspondingly, the cytotoxicity of SF-126 was the highest followed by SF-767 and SF-763. The results obtained in this work provided unequivocal evidence for drug resistance to CENUs induced by AGT-mediated repair of DNA ICLs. We postulate that the level of dG-dC crosslink has the potential to be employed as a biomarker for estimating drug resistance and anticancer efficiencies of novel CENU chemotherapies.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
PLOS ONE
ISSN: 1932-6203
年份: 2015
期: 3
卷: 10
3 . 7 0 0
JCR@2022
ESI学科: Multidisciplinary;
ESI高被引阀值:464
JCR分区:1
中科院分区:3
归属院系: