收录:
摘要:
接触问题是岩石等非连续介质研究中的关键力学问题。基于三维接触问题的实际物理意义,分别在法向和切向建立等价的互补模型。针对互补模型呈现出的强非线性性质,提出一个新的光滑逼近函数,当该函数中的参数趋于0~+时,它等价于原来的互补模型。由于该逼近函数具有C~1连续,相应的Jacobian矩阵在任何条件下非奇异,这使得常规的Newton法及Newton族算法可以顺利地求解。同时,通过方向向量的引入,将已有研究在二维摩擦接触问题中所提出的约束函数法推广到三维,解决了三维接触问题中由于方向角的周期性带来的求解稳定性问题。在此基础上,建立三维点面接触有限元模型,并用经典算例验证该方法的有效性和适应性。
关键词:
通讯作者信息:
电子邮件地址: