• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xue, Yan Qing (Xue, Yan Qing.) | Guo, Hang (Guo, Hang.) (学者:郭航) | Shang, Hui Hui (Shang, Hui Hui.) | Ye, Fang (Ye, Fang.) | Ma, Chong Fang (Ma, Chong Fang.)

收录:

EI Scopus SCIE

摘要:

The current collector offers passages for mass transport and is one of the key components of the passive direct methanol fuel cell (DMFC). The effect of perforated current collector design on mass transport is studied based on a three-dimensional (3D), unsteady-state, two-phase mass transport model of a passive DMFC cathode. The model is implemented via the mixture multiphase model, which solves the continuity and momentum equations for the mixture and the volume fraction equation for the secondary phases. Numerical results indicate that the distributions of oxygen in both cathode catalyst layer (CCL) and cathode diffusion layer (CDL) are non-uniform because of the effect of the perforated current collector plate (CCP) structure. Liquid water produced by an electrochemical reaction in the CCL accumulates significantly at the bottom. Clearly, the distribution of liquid water in the cathode catalyst and diffusion layers is affected by gravity. The size of the circular holes and the distance between them are taken into account to investigate the effect of the CCP structure. Small uniformly arrayed circular holes in the entire active area of CCP are advantageous to the transfer of gas and liquid water in the cathode side of a passive DMFC. (C) 2015 Elsevier Ltd. All rights reserved.

关键词:

Passive feeding Current collector Transient model Mass transfer Direct methanol fuel cells

作者机构:

  • [ 1 ] [Guo, Hang]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 2 ] [Guo, Hang]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China

通讯作者信息:

  • 郭航

    [Guo, Hang]Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ENERGY

ISSN: 0360-5442

年份: 2015

卷: 81

页码: 501-510

9 . 0 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:174

JCR分区:1

中科院分区:1

被引次数:

WoS核心集被引频次: 15

SCOPUS被引频次: 17

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:108/3918500
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司