收录:
摘要:
针对半监督人脸表情识别算法在表情来源多样、姿态不一时准确率低的问题,在迁移学习自适应提升算法的基础上,提出一种新的半监督学习自适应提升算法。该算法通过近邻计算由训练集中的已标记样本求出未标记样本的类别,并借助AdaBoost. M1算法分别对多数据源的人脸表情样本和多姿态人脸表情样本展开识别,实现样本的多类识别任务。实验结果表明,与标号传递等半监督学习算法相比,该算法显著提高了表情识别率,且分别在多数据库和多姿态数据库上获得了73.33%和87.71%的最高识别率。
关键词:
通讯作者信息:
电子邮件地址: