• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Hao, C. L. (Hao, C. L..) | Cui, C. F. (Cui, C. F..) | Dai, Y. H. (Dai, Y. H..)

收录:

Scopus SCIE

摘要:

Z-eigenvalues of tensors, especially extreme ones, are quite useful and are related to many problems, such as automatic control, quantum physics, and independent component analysis. For supersymmetric tensors, calculating the smallest/largest Z-eigenvalue is equivalent to solving a global minimization/maximization problem of a homogenous polynomial over the unit sphere. In this paper, we utilize the sequential subspace projection method (SSPM) to find extreme Z-eigenvalues and the corresponding Z-eigenvectors. The main idea of SSPM is to form a 2-dimensional subspace at the current point and then solve the original optimization problem in the subspace. SSPM benefits from the fact that the 2-dimensional subproblem can be solved by a direct method. Global convergence and linear convergence are established for supersymmetric tensors under certain assumptions. Preliminary numerical results over several testing problems show that SSPM is very promising. Besides, the globalization strategy of random phase can be easily incorporated into SSPM, which promotes the ability to find extreme Z-eigenvalues. Copyright (c) 2014 John Wiley & Sons, Ltd.

关键词:

supersymmetric tensor global convergence extreme Z-eigenvalue linear convergence subspace projection

作者机构:

  • [ 1 ] [Hao, C. L.]Beijing Univ Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Cui, C. F.]Chinese Acad Sci, Acad Math & Syst Sci, State Key Lab Sci & Engn Comp, Beijing 100190, Peoples R China
  • [ 3 ] [Dai, Y. H.]Chinese Acad Sci, Acad Math & Syst Sci, State Key Lab Sci & Engn Comp, Beijing 100190, Peoples R China

通讯作者信息:

  • [Dai, Y. H.]Chinese Acad Sci, Acad Math & Syst Sci, State Key Lab Sci & Engn Comp, Beijing 100190, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS

ISSN: 1070-5325

年份: 2015

期: 2

卷: 22

页码: 283-298

4 . 3 0 0

JCR@2022

ESI学科: MATHEMATICS;

ESI高被引阀值:82

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 35

SCOPUS被引频次: 37

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:416/4298302
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司