• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jia, Ya-fei (Jia, Ya-fei.) | Li, Yu-jian (Li, Yu-jian.) | Fu, Peng-bin (Fu, Peng-bin.) | Tian, Yun (Tian, Yun.)

收录:

EI Scopus SCIE

摘要:

Metric learning methods have been widely used in hyperspectral image (HSI) classification. They can project higher dimensional feature vectors to lower dimensional vectors and get more accurate classification results. Recently, nearest feature line (NFL) embedding (NFLE) algorithm has been proposed in HSI classification. This method tries to embed the distance between a point and its NFL. However, the decreasing of the point-to-line (P2L) distance does not mean that the point-to-point (P2P) distance decreases. In some cases, the P2P distance may even increase, which results in poor classification performance. In this letter, amodified algorithm of NFL and point embedding (NFLPE) is proposed for HSI analysis. Unlike NFLE, which just constrains the P2L distance, NFLPE also imposes an additional constraint on the P2P distance. This additional constraint avoids the possibility that when the P2L distance decreases, the P2P distance increases. Classification experiments with HSI demonstrate its superiority to other related techniques.

关键词:

hyperspectral image (HSI) supervised classification metric learning Feature extraction

作者机构:

  • [ 1 ] [Jia, Ya-fei]Beijing Univ Technol, Coll Comp Sci, Beijing 100022, Peoples R China
  • [ 2 ] [Li, Yu-jian]Beijing Univ Technol, Coll Comp Sci, Beijing 100022, Peoples R China
  • [ 3 ] [Fu, Peng-bin]Beijing Univ Technol, Coll Comp Sci, Beijing 100022, Peoples R China
  • [ 4 ] [Tian, Yun]Calif State Univ Fullerton, Dept Comp Sci, Fullerton, CA 92834 USA

通讯作者信息:

  • [Jia, Ya-fei]Beijing Univ Technol, Coll Comp Sci, Beijing 100022, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS

ISSN: 1545-598X

年份: 2015

期: 3

卷: 12

页码: 651-655

4 . 8 0 0

JCR@2022

ESI学科: GEOSCIENCES;

ESI高被引阀值:204

JCR分区:1

中科院分区:3

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:155/3890728
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司