收录:
摘要:
针对功能性磁共振成像(f MRI)数据高维小样本特性给分类模型带来的过拟合问题,文中基于Softmax回归提出结合L2正则与L1正则的全脑f MRI数据特征选择框架.首先,基于大脑认知的特点,将全脑分成感兴趣区域和非感兴趣区域.然后,使用可以缩小权值系数的L2正则对感兴趣区域建模以选出感兴趣区域的全部体素,使用具有稀疏作用的L1正则对非感兴趣区域建模以选出非感兴趣区域中的激活体素.最后,结合感兴趣区域和非感兴趣区域的体素构成全脑f MRI数据的正则化Softmax回归模型.在Haxby数据集上的实验表明,L2与L1的正则化策略可有效提升全脑分类的准确率.
关键词:
通讯作者信息:
电子邮件地址: