收录:
摘要:
利用行人头肩或者颜色特征,实现行人外层初定位;在初定位区域上,应用改进的尺度不变特征变换(SIFT)特征匹配实现对目标的精确定位.根据SIFT特征确定目标尺寸,解决行人尺度变化问题;将SIFT特征模板库更新机制引入特征保留优先级,解决行人短暂遮挡和形变的问题.为解决传统Cam-Shift算法的椭圆核函数自适应问题,将SIFT特征尺度变化与Epanechnikov函数融合,构成自适应带宽核函数,克服背景对目标的干扰.外层粗定位结果限制了Harris算子的检测范围,提高了SIFT特征匹配的实时性.实验结果证明,所提出移动机器人行人跟踪算法可以在目标尺度变化、短暂遮挡以及形变情况下实现行人跟踪.
关键词:
通讯作者信息:
电子邮件地址: