• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Jinfu (Yang, Jinfu.) (学者:杨金福) | Zhang, Shanshan (Zhang, Shanshan.) | Wang, Guanghui (Wang, Guanghui.) | Li, Mingai (Li, Mingai.) (学者:李明爱)

收录:

EI Scopus SCIE

摘要:

Place classification and object categorization are necessary functions of vision-based robotic systems. In this paper, a novel latent topic model is proposed to learn and recognize scenes and places. First, each image in the training set is characterized by a collection of local features, known as codewords, obtained by unsupervised learning, and each codeword is represented as part of a topic. Then, the codeword distribution of detected local features from the training images is learned by performing a k-means algorithm. Next, a modified Latent Dirichlet Allocation model is employed to highlight the significant features (i.e., the codewords with higher frequency in the codebook). The Highlighted Latent Dirichlet Allocation (HLDA) improves the efficiency of learning procedure. Finally, a fast variational inference algorithm for HLDA is proposed to reduce the computational complexity in parameter estimation. Experimental results using natural scenes, indoor and outdoor datasets show that the proposed HLDA method performs better than other counterparts in terms of accuracy and robustness with the variation of illumination conditions, perspectives, and scales. The Fast HLDA is order of magnitudes faster than the HLDA without obvious loss of accuracy. (C) 2014 Elsevier B.V. All rights reserved.

关键词:

Probabilistic topic model Highlighted Latent Dirichlet Allocation Place recognition Fast variational inference

作者机构:

  • [ 1 ] [Yang, Jinfu]Beijing Univ Technol, Dept Control Sci & Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Shanshan]Beijing Univ Technol, Dept Control Sci & Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Mingai]Beijing Univ Technol, Dept Control Sci & Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Guanghui]Univ Kansas, Dept Elect Engn & Comp Sci, Lawrence, KS 66045 USA

通讯作者信息:

  • 杨金福

    [Yang, Jinfu]Beijing Univ Technol, Dept Control Sci & Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

NEUROCOMPUTING

ISSN: 0925-2312

年份: 2015

卷: 148

页码: 578-586

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:168

JCR分区:1

中科院分区:3

被引次数:

WoS核心集被引频次: 12

SCOPUS被引频次: 12

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:1946/4277604
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司