• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Y. (Zhang, Y..) (学者:张勇) | Cai, G. (Cai, G..) | Sun, J. (Sun, J..) | Wang, Y. (Wang, Y..) | Chen, J. (Chen, J..)

收录:

EI Scopus SCIE

摘要:

In the article a new sparse low-rank matrix decomposition model is proposed based on the smoothly clipped absolute deviation (SCAD) penalty. In order to overcome the computational hurdle we generalize the alternating direction method of multipliers (ADMM) algorithm to develop an alternative algorithm to solve the model. The algorithm we designed alternatively renew the sparse matrix and low-rank matrix in terms of the closed form of SCAD penalty. Thus, the algorithm reduces the computational complexity while at the same time to keep the computational accuracy. A series of simulations have been designed to demonstrate the performances of the algorithm with comparing with the Augmented Lagrange Multiplier (ALM) algorithm. Ultimately, we apply the model to an on-board video background modeling problem. According to model the on-board video background, we can separate the video background and passenger's actions. Thus, the model can help us to identify the abnormal action of train passengers. The experiments show the background matrix we estimated is not only sparser, but the computational efficiency is also improved.

关键词:

low-rank matrix sparse SCAD abnormal action identification alternative algorithms

作者机构:

  • [ 1 ] [Zhang, Y.]Beijing Univ Technol, Beijing Key Lab Traff Engn, Beijing, Peoples R China
  • [ 2 ] [Cai, G.]Beijing Jiaotong Univ, State Key Lab Rail Traff Control & Safety, Beijing, Peoples R China
  • [ 3 ] [Sun, J.]Beijing Jiaotong Univ, State Key Lab Rail Traff Control & Safety, Beijing, Peoples R China
  • [ 4 ] [Wang, Y.]Beijing Jiaotong Univ, State Key Lab Rail Traff Control & Safety, Beijing, Peoples R China
  • [ 5 ] [Chen, J.]CSR Times Elect Co Ltd, Zhuzhou 412001, Hunan, Peoples R China

通讯作者信息:

  • 张勇

    [Zhang, Y.]Beijing Univ Technol, Beijing Key Lab Traff Engn, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

NEURAL NETWORK WORLD

ISSN: 1210-0552

年份: 2015

期: 6

卷: 25

页码: 657-668

0 . 8 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:168

JCR分区:4

中科院分区:4

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:426/5065170
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司