• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Yuan (Zhang, Yuan.) | Cheng, Yue (Cheng, Yue.) | Ge, Liang (Ge, Liang.) | Du, Nan (Du, Nan.) | Jia, Kebin (Jia, Kebin.) (学者:贾克斌) | Zhang, Aidong (Zhang, Aidong.)

收录:

Scopus SCIE

摘要:

Many clustering methods have been developed to identify functional modules in Protein-Protein Interaction (PPI) networks but the results are far from satisfaction. To overcome the noise and incomplete problems of PPI networks and find more accurate and stable functional modules, we propose an integrative method, bipartite graph-based Non-negative Matrix Factorisation method (BiNMF), in which we adopt multiple biological data sources as different views that describe PPIs. Specifically, traditional clustering models are adopted as preliminary analysis of different views of protein functional similarity. Then the intermediate clustering results are represented by a bipartite graph which can comprehensively represent the relationships between proteins and intermediate clusters and finally overlapping clustering results are achieved. Through extensive experiments, we see that our method is superior to baseline methods and detailed analysis has demonstrated the benefits of integrating diverse clustering methods and multiple biological information sources.

关键词:

PPI functional module detection protein-protein interaction networks non-negative matrix factorisation consensus mining multiple data sources integration

作者机构:

  • [ 1 ] [Zhang, Yuan]Beijing Univ Technol, Dept Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Cheng, Yue]Beijing Univ Technol, Dept Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Jia, Kebin]Beijing Univ Technol, Dept Elect Informat & Control Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Ge, Liang]SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY 14260 USA
  • [ 5 ] [Du, Nan]SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY 14260 USA
  • [ 6 ] [Zhang, Aidong]SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY 14260 USA

通讯作者信息:

  • 贾克斌

    [Jia, Kebin]Beijing Univ Technol, Dept Elect Informat & Control Engn, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS

ISSN: 1748-5673

年份: 2015

期: 2

卷: 13

页码: 122-140

0 . 3 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:168

JCR分区:4

中科院分区:4

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

在线人数/总访问数:2550/3889041
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司