Indexed by:
Abstract:
Compared with the traditional steel rigid connection, the beam-column connections with weakened beam end have better ductility, but the local buckling in the weakened zone and the overall lateral deformation may occur in strong earthquake. The replaceable steel connection with low yield point metal is proposed based on the concept of earthquake resilient structure. In this connection, the weakened parts in the flange slab and web plate are filled with low yield point metal, and the metal firstly yields and dissipates energy sufficiently in earthquake; hence, the main parts are intact and the yield point metal can be replaced. The seismic performances of the three types of connections which include traditional connection, beamend weakened connection, and replaceable connection with low yield point steel under low cycle reciprocating load are studied. In addition, the energy dissipation capacity and damage characteristics of different connections are compared. The multiscale finite element models for the steel frames with different connections are analyzed by time-history method; both the computational efficiency and the accuracy are assured. The analysis results approve that the replaceable connection can confine the major damage in the replacement material and have better energy dissipation ability, safety reserves, and resilient ability.
Keyword:
Reprint Author's Address:
Email:
Source :
ADVANCES IN MATERIALS SCIENCE AND ENGINEERING
ISSN: 1687-8434
Year: 2015
Volume: 2015
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:319
JCR Journal Grade:3
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 3
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0