• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jia, Xin-Jian (Jia, Xin-Jian.) | Wang, Jinshu (Wang, Jinshu.) (学者:王金淑) | Wu, Junshu (Wu, Junshu.) | Du, Yucheng (Du, Yucheng.) | Zhao, Bingxin (Zhao, Bingxin.) | den Engelsen, Daniel (den Engelsen, Daniel.)

收录:

EI Scopus SCIE

摘要:

A unique bouquet-like calcium sulfate dihydrate (BCSD) was successfully synthesized from calcium chloride and aluminum potassium sulfate in aqueous sodium carboxymethyl cellulose (CMC) solution by means of a metathesis reaction. The morphology and structure of BCSD were characterized by scanning electron microscopy, powder X-ray diffraction and transmission electron microscopy. The adsorption of different organic dyes from aqueous solutions onto the as-synthesized BCSD was then investigated, taking into account the influences of adsorbent dose (1.0-3.5 g L-1), solution pH (5.0-12.0) and adsorption time. The results indicated that the temperature and agitation rate had no effect on the morphology of the samples. With the increase of CMC concentration from 0.10% to 0.50%, lamellar calcium sulfate dihydrate (LCSD) gradually transformed into rod-like calcium sulfate dihydrate (RCSD), and eventually generated BCSD. The as-prepared BCSD was monoclinic with preferential [021] and [041] orientations. Moreover, BCSD selectively adsorbed Congo red (CR) instead of rhodamine B and methyl orange. The adsorption equilibrium process of CR was an exothermic process and could adequately be described by the Langmuir isotherm model. The calculated maximum adsorption quantity (q(max)) was 1224.09 mg g(-1) at 303.5 K, which was almost 12 times larger than that onto LCSD (100.80 mg g(-1)). Additionally, the adsorption process of CR was a multi-step process, and the adsorption kinetics could be described in terms of a pseudo-second-order model. From attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy studies it was concluded that CR was chemisorbed on BCSD. These results indicate that BCSD is a promising candidate in wastewater treatment.

关键词:

作者机构:

  • [ 1 ] [Jia, Xin-Jian]Beijing Univ Technol, Coll Mat Sci & Engn, Minist Educ, Key Lab Adv Funct Mat, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Jinshu]Beijing Univ Technol, Coll Mat Sci & Engn, Minist Educ, Key Lab Adv Funct Mat, Beijing 100124, Peoples R China
  • [ 3 ] [Wu, Junshu]Beijing Univ Technol, Coll Mat Sci & Engn, Minist Educ, Key Lab Adv Funct Mat, Beijing 100124, Peoples R China
  • [ 4 ] [Du, Yucheng]Beijing Univ Technol, Coll Mat Sci & Engn, Minist Educ, Key Lab Adv Funct Mat, Beijing 100124, Peoples R China
  • [ 5 ] [Zhao, Bingxin]Beijing Univ Technol, Coll Mat Sci & Engn, Minist Educ, Key Lab Adv Funct Mat, Beijing 100124, Peoples R China
  • [ 6 ] [den Engelsen, Daniel]Beijing Univ Technol, Coll Mat Sci & Engn, Minist Educ, Key Lab Adv Funct Mat, Beijing 100124, Peoples R China

通讯作者信息:

  • 王金淑

    [Wang, Jinshu]Beijing Univ Technol, Coll Mat Sci & Engn, Minist Educ, Key Lab Adv Funct Mat, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

RSC ADVANCES

ISSN: 2046-2069

年份: 2015

期: 88

卷: 5

页码: 72321-72330

3 . 9 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:253

JCR分区:2

中科院分区:3

被引次数:

WoS核心集被引频次: 50

SCOPUS被引频次: 50

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:203/4508457
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司