• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

蒋宗礼 (蒋宗礼.) (学者:蒋宗礼) | 隋少鹏 (隋少鹏.)

收录:

CQVIP

摘要:

向量空间模型是最常用的信息检索模型,它根据词频来计算文档之间的相关度,这种方法虽然能够满足用户的基本检索需求,但是对于检索要求较高的用户,其效果仍然不甚理想。文中在向量空间模型的基础上,首先通过领域本体和上层本体来计算特征词项之间的相似度,据此得出与查询词相关的词,在求词项频率和逆文档频率时考虑这些词,然后引入了词序相关度和词语相邻相关度这两个概念,把特征项的位置关系也考虑进来。实验结果表明,文中提出的模型相比原始向量空间模型,在准确率上有了较大的改善。这完全说明,与原始向量空间模型相比,文中提出的检索模型不仅考虑了与原有词项具有相似语义的词项,而且还考虑了词项顺序和词项相邻信息,从而更能符合用户的检索要求。

关键词:

检索模型 向量空间模型 本体 相似度

作者机构:

  • [ 1 ] [蒋宗礼]北京工业大学
  • [ 2 ] [隋少鹏]北京工业大学

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

计算机技术与发展

ISSN: 1673-629X

年份: 2015

期: 1

页码: 6-10

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次: 3

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:1283/3885026
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司