收录:
摘要:
针对传统支持向量机无法适应大规模问题,通过引入加权线性损失函数,取代标准支持向量机的Hinge损失,提出一种加权线性损失支持向量机WLSVM(Weighted Linear Loss Support Vector Machine)。它的主要方法是:(1)通过对线性损失增加权重,提出对不同位置上的训练点给出不同惩罚,在一定程度上避免了过度拟合,增强了泛化能力。(2)仅需计算非常简单的数学表达式就可获得分类超平面,且方便解决大规模问题。通过在合成和真实数据集上的试验,结果表明:WLSVM的分类精度高于SVM和LSSVM,且减少了计算时间,尤其对于大规模问题。
关键词:
通讯作者信息:
电子邮件地址: