• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

王全民 (王全民.) | 王莉 (王莉.) | 曹建奇 (曹建奇.)

收录:

CQVIP

摘要:

随着因特网的飞速发展,电子商务网站为人们提供了越来越多的选择,随之而来的信息过载和信息迷失问题日益严重,个性化推荐系统的出现极大地改善了这一情况。协同过滤是目前主流的推荐算法,但随着用户物品数目的日益增多和系统规模的不断扩大,用户-物品评分矩阵存在着严重的稀疏性等问题,导致推荐系统的推荐质量严重下降。针对此问题,文中提出了一种改进的协同过滤推荐算法,将评论挖掘技术引入协同过滤算法中,量化物品在各个特征上的分数,然后结合物品特征和用户评分共同计算物品相似度,将得到的物品预测评分填充用户-物品评分矩阵,最后结合基于用户的协同过滤思想对用户产生推荐。实验结果表明,改进的协同过滤推荐算法提高了推荐结果的精确度。

关键词:

评论 推荐算法 相似度 协同过滤

作者机构:

  • [ 1 ] [王全民]北京工业大学
  • [ 2 ] [王莉]北京工业大学
  • [ 3 ] [曹建奇]北京工业大学

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

计算机技术与发展

ISSN: 1673-629X

年份: 2015

期: 10

页码: 24-28

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次: 10

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:2781/3875666
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司