收录:
摘要:
随着因特网的飞速发展,电子商务网站为人们提供了越来越多的选择,随之而来的信息过载和信息迷失问题日益严重,个性化推荐系统的出现极大地改善了这一情况。协同过滤是目前主流的推荐算法,但随着用户物品数目的日益增多和系统规模的不断扩大,用户-物品评分矩阵存在着严重的稀疏性等问题,导致推荐系统的推荐质量严重下降。针对此问题,文中提出了一种改进的协同过滤推荐算法,将评论挖掘技术引入协同过滤算法中,量化物品在各个特征上的分数,然后结合物品特征和用户评分共同计算物品相似度,将得到的物品预测评分填充用户-物品评分矩阵,最后结合基于用户的协同过滤思想对用户产生推荐。实验结果表明,改进的协同过滤推荐算法提高了推荐结果的精确度。
关键词:
通讯作者信息:
电子邮件地址: