收录:
摘要:
为有效提高Mean Shift算法的模板匹配精确度,采用基于特征贡献度的Mean Shift目标跟踪方法,对不同贡献度的特征向量赋予不同的权重,以彰显目标特征、抑制背景因素.分别介绍传统Mean Shift目标跟踪算法和基于特征贡献度的Mean Shift算法,并针对多组视频进行实验验证与分析.结果表明:改进后的Mean Shift算法不仅能提高跟踪精度、提升系统的鲁棒性,而且对640 pixel×480 pixel大小的视频处理平均帧速度为22 frames/s,满足实时跟踪要求.
关键词:
通讯作者信息:
电子邮件地址: