收录:
摘要:
目的 为有效提取稳态视觉诱发脑机接口(SSVEP-based brain-computer interface)中的脑电特征,提出一种基于独立成分分析(independent component analysis,ICA)与希尔伯特黄变换(Hilbert-Huang transform,HHT)的特征提取方法.方法 对采集得到的脑电信号进行带通滤波,得到预处理的脑电信号,将滤波后的脑电信号作为ICA的输入,经过ICA实现独立成分的快速获取.引入HHT对独立成分进行经验模态分解(EMD),分解获取固有模态函数(intrinsic mode function,IMF),通过对IMF的频域分析,即可提取出特征.将ICA和HHT法同WT法、ICA法以及HHT法等常用的特征提取方法在频域、功率谱估计、在时间消耗等多方面进行比对分析.结果 频域分析和功率谱估计中,本文提出的方法明显优于WT法和ICA法,略优于HHT法.时间消耗方面,本文提出的方法略优于HHT法.结论 基于ICA和HHT的特征提取方法在稳态视觉诱发脑机接口的特征提取中是可行的,并有效去除了脑电信号中的噪声.
关键词:
通讯作者信息:
电子邮件地址: