• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Shao, Yuan-Hai (Shao, Yuan-Hai.) | Chen, Wei-Jie (Chen, Wei-Jie.) | Wang, Zhen (Wang, Zhen.) | Zhang, Hai-Bin (Zhang, Hai-Bin.) (学者:张海斌) | Deng, Nai-Yang (Deng, Nai-Yang.)

收录:

EI Scopus SCIE

摘要:

Local learning has been successfully applied in pattern recognition due to its powerful discriminating ability. The conventional local learning usually divides the feature space into a number of homogeneous local regions. By contrast, we introduce a new local strategy, which divides the feature space into two kinds of regions: positive local regions and negative local regions. Based on this strategy, a local proximal classifier (LPC) is constructed. Furthermore, to avoid overfitting, we propose a local proximal classifier with global regularizer (GLPC) by improving the LPC so that the local classifiers are smoothly glued together. In GLPC, the local correlation is modeled to capture the sample distribution among the local region, resulting in increasing the discriminating ability. Experimental results show the effectiveness of our classifiers in both classification accuracy and computation time. (C) 2014 Elsevier B.V. All rights reserved.

关键词:

Positive and negative local regions Proximal classifier Global regularization Local learning Pattern recognition

作者机构:

  • [ 1 ] [Shao, Yuan-Hai]Zhejiang Univ Technol, Zhijiang Coll, Hangzhou 310024, Zhejiang, Peoples R China
  • [ 2 ] [Chen, Wei-Jie]Zhejiang Univ Technol, Zhijiang Coll, Hangzhou 310024, Zhejiang, Peoples R China
  • [ 3 ] [Wang, Zhen]Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China
  • [ 4 ] [Zhang, Hai-Bin]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 5 ] [Deng, Nai-Yang]China Agr Univ, Coll Sci, Beijing 100083, Peoples R China

通讯作者信息:

  • [Deng, Nai-Yang]China Agr Univ, Coll Sci, Beijing 100083, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

NEUROCOMPUTING

ISSN: 0925-2312

年份: 2014

卷: 145

页码: 131-139

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:188

JCR分区:2

中科院分区:3

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:200/3910395
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司